Length-Tension Relationship
- Amount of tension and force of contraction depends on how stretched or contracted muscle was before it’s stimulated
- If overly contracted at rest, a weak contraction results
 - If Sarcomere is < 60% or >175% of original length develop no tension
- Optimum resting length produces greatest force when muscle contracts
 - CNS adjusts our muscle tone – state of partial contraction
 - Maintains optimum length – i.e., always ready for action

Behavior of Whole Muscles
- **threshold** - minimum voltage necessary to generate an action potential in the muscle fiber and produce a contraction
- **twitch** – a quick cycle of contraction and relaxation
- Subthreshold electrical stimulus causes = no contraction

Contraction Strength of Twitches
- **subthreshold stimulus** – no contraction at all
- **at threshold intensity and above** - a twitch is produced
 - Twitches caused by increased voltage are no stronger than those at threshold
 - I.e., muscles follow all-or-none law (contracting to its maximum or not at all)
- Not exactly true
 - Twitches vary in strength depending upon:
 - Stimulus frequency - stimuli arriving closer together produce stronger twitch
 - Concentration of Ca^{2+} in sarcoplasm can vary the frequency
 - How stretched muscle was before it was stimulated
 - Temperature - warmed up muscle contracts more strongly – enzymes work more quickly
 - Ph: if low in sarcoplasm weakens contraction - fatigue
 - Hydration of muscle affects overlap of actin & myosin

Phases of twitch contraction
- **Latent Period**: time required for excitation, excite/coupling and tension
 - Internal tension, no shortening
- **Contraction phase**: sliding filaments
 - External tension
- **Relaxation phase**: SR reabsorbs Ca^{2+}, myosin releases actin - tension declines
 - Muscle returns to resting length
 - Twitch lasts from 7 to 100 msec

Recruitment and Stimulus Intensity
- Stimulating nerve with higher and higher voltages produces stronger contractions
 - Higher voltages excite more nerve fibers in the motor nerve which stimulates more motor units to contract
- Recruitment or multiple motor units (MMU) summation – bringing more motor units into play
Twitch Strength & Stimulus Frequency

- Twitch muscle twitches
- Stimuli

Treppe: stimulus right after relaxation following tension is greater than previous.

Incomplete tetanus: stimuli before muscle relaxes = summation of twitches – rapid cycles of contr. & relax. Tension rises!

Complete tetanus: freq so great there is no relaxation

Fatigue

- Muscle shortens, tension remains constant
- Movement
- Muscle develops tension but does not shorten
- No movement

Isometric and Isotonic Phases of Contraction

- at the beginning of contraction – **isometric phase**
 - muscle tension rises but muscle does not shorten
- when tension overcomes resistance of the load
 - tension levels off
- muscle begins to shorten and move the load – **isotonic phase**

Muscle Metabolism

- all muscle contraction depends on **ATP**
- ATP supply depends on availability of:
 - oxygen
 - organic energy sources such as glucose and fatty acids
- two main pathways of ATP synthesis
 - **aerobic respiration**
 - produces far more ATP
 - less toxic end products (CO₂ and water)
 - requires a continual supply of oxygen
 - **anaerobic fermentation**
 - produce ATP in the absence of O₂
 - yields little ATP and lactic acid, a major factor in muscle fatigue

Overview of ATP Production

- ATP consumed within 60 seconds of formation

Glycogen:
- Stored in Liver, Skeletal muscles, heart
- Can be changed into glucose

Modes of ATP Synthesis During Exercise

- At rest most ATP generated by aerobic respir. of fatty acids
- During short intense exercise lactic acid formation increases from glycogen – ATP is used up quickly until Phosphocreatine is depleted
- During anaerobic fermentation until Phosphocreatine is depleted
- Aerobic respiration supported by cardiorespiratory bringing O₂ to muscles
Immediate Energy Needs

Fatigue

- Causes of muscle fatigue
 - ATP synthesis declines as glycogen is consumed
 - ATP shortage slows down the Na⁺ - K⁺ pumps
 - lactic acid lowers pH of sarcoplasm
 - inhibits enzymes involved in contraction,
 - inhibits enzymes used in ATP synthesis
 - release of K⁺ with each action potential causes the accumulation of extracellular K⁺
 - hyperpolarizes the cell and makes the muscle fiber less excitable
 - motor nerve fibers use up their Achetelcholine
 - CNS fatigues ??????? less signal output to skeletal muscles

Endurance

- endurance – ability to maintain high-intensity exercise for > 4 to 5 minutes
 - determined in large part by one’s maximum oxygen uptake (VO₂max)
 - maximum oxygen uptake – point at which rate of oxygen consumption reaches a plateau and does not increase further with added workload

Physiological Classes of Muscle Fibers

- slow oxidative (SO), slow-twitch, red, or type I fibers
 - Lots of mitochondria, myoglobin and capillaries – deep red color
 - adapted for aerobic respiration – slow to fatigue
 - long lasting twitch (~100 msec)

- fast glycolytic (FG), fast-twitch, white, or type II fibers
 - few mitochondria, myoglobin, and blood capillaries – pale appearance
 - adapted for quick responses – fast to fatigue (lactic acid)
 - rich in enzymes of phosphagen and glycogen-lactic acid systems generate lactic acid causing fatigue
 - fast twitches (~ 7.5 msec)

- ratio of different fiber types have genetic predisposition

Oxygen Debt

- When exercise stops, rate of oxygen uptake does not immediately return to pre-exercise levels
- Because oxygen debt accumulated during exercise:
 - When oxygen is withdrawn from hemoglobin and myoglobin
 - And because of O₂ needed for metabolism of lactic acid produced by anaerobic respiration
 - Turn it back to pyruvic acid then to glycogen
Strength and Conditioning

- muscles can generate more tension than bones and tendons can withstand
- muscular strength depends on:
 - primarily on muscle size
 - fascicle arrangement
 - pennate are stronger than parallel, and parallel stronger than circular
 - size of motor units
 - multiple motor unit summation – recruitment of many motor units
 - temporal summation
 - nerve impulses usually arrive at a muscle in a series of closely spaced action potentials
 - length – tension relationship (resting muscle at optimal length)
 - fatigue

Resistance Training (weight lifting)

- contraction of a muscles against a load that resist movement
- Couple times a week
- Hypertrophy
- more myofilaments and myofibrils synthesized

Endurance Training (aerobic exercise)

- improves fatigue resistant muscles
- slow twitch fibers produce more mitochondria, glycogen, and acquire a greater density of blood capillaries
- improves skeletal strength
- increases red blood cell count and oxygen transport capacity of the blood
- enhances cardiovascular, respiratory, and nervous systems

Cardiac Muscle

- Location?
- Function?
- Required properties of cardiac muscle
 - Autorhythmic cells
 - contraction with regular rhythm
 - muscle cells of each chamber must contract in unison
 - contractions must last long enough to expel blood
 - must be highly resistant to fatigue

Cardiac Muscle

-autorhythmic cells!!!!
- autonomic nervous system can influence it
- slow twitches!!
- uses aerobic respiration almost exclusively
 - rich in myoglobin and glycogen
 - has especially large mitochondria
- highly fatigue resistant

Smooth Muscle

- myocytes have a fusiform shape & one nucleus
- no visible striations
- Actin and myosin do not overlap
- z discs absent
- No troponin
- Cytoplasm has:
 - dense bodies = Like z disks
 - protein plaques on the inner face of the plasma
 - cytoskeleton of intermediate filaments: attach to the membrane plaques and dense bodies
- Ca²⁺ needed for muscle contraction comes from ECF
- ANS controlled
- capable of mitosis (hyperplasia)
2 Types of Smooth Muscle

- **multunit smooth muscle**
 - occurs in some of the largest arteries and pulmonary air passages, in piloerector muscles of hair follicle, and in the iris of the eye
 - Single neuron stimulates many myocytes
 - i.e., like a motor unit

- **single-unit smooth muscle** (visceral muscle)
 - myocytes are electrically coupled to each other by gap junctions
 - stimulate each other and a large number of cells contract as a single unit
 - i.e., each cell does NOT have to be stimulated directly by a motor neuron

Layers of Visceral Smooth Muscle

- **Epithelium**
- **Mucosa**
 - Lamina propria
 - Muscularis mucosae
- **Muscularis externa**
 - Circular layer
 - Longitudinal layer

Stimulation of Smooth Muscle

- Involuntary and can contract without nervous stimulation!!
 - chemical stimuli: hormones, carbon dioxide, low pH, and oxygen deficiency
 - in response to stretch
 - Cold stimulus – (vasa and scrotum)
 - Stretching - peristalsis
- most innervated by ANS nerve fibers
 - can trigger and modify contractions
 - Neurotransmitters: acetylcholine or norepinephrine

Contraction and Relaxation

- contraction is triggered by Ca\(^{2+}\), ATP, and sliding thin past thick myofilaments
- contraction begins in response to Ca\(^{2+}\) that enters the cell from ECF
 - voltage, ligand, and mechanically-gated (stretching) Ca\(^{2+}\) channels open (Ca\(^{2+}\) enters cell)
- Ca\(^{2+}\) binds to calmodulin
 - activates myosin light-chain kinase – adds phosphate to myosin head
 - This activates myosin ATPase - hydrolyzing ATP – allowing myosin head to move Actin
 - thick filaments pull on thin ones, this pulls on dense bodies and membrane plaques
Figure 11.24

Activation of Contraction in Smooth vs. Skeletal Muscle

Stretching Smooth Muscle

- **stretch** can open mechanically-gated calcium channels in the sarcolemma causing contraction
 - **peristalsis** – waves of contraction brought about by food distending the esophagus or feces distending the colon
 - propels contents along the organ
- **stress-relaxation response** (receptive relaxation) - helps hollow organs gradually fill (urinary bladder)
 - when stretched, tissue briefly contracts then relaxes – helps prevent emptying while filling

Contraction and Stretching

- smooth muscle contracts forcefully even when greatly stretched
 - Remember what happens when Skeletal muscle is stretched?
- **plasticity** – the ability to adjust its tension to the degree of stretch
 - a hollow organ such as the bladder can be greatly stretched yet not become flabby when it is empty

Dense body

Intermediate filaments of cytoskeleton

Actin filaments

Myosin

Figure 11.24

(a) Relaxed smooth muscle cells

(b) Contracted smooth muscle cells