Endocrine Glands: Hypothalamus & Pituitary Glands

- Hypothalamus (Master Gland)
- 8 hormones produced in hypothalamus
 - 6 regulate anterior pituitary
 - e.g., TRH, GnRH, GHRH
 - E.g., PIH, Somatostatin (GH TSH)
- Hypothalamus receives info (direction from higher brain areas)

Pituitary Gland (hypophysis)

- Secretes 6 *trophic* hormones
 - Trophic = feed
 - Concentration = hypertrophy
 - Shortened to “tropic” for hormones of Ant. Pit.
 - Ant. Pit. Hormones suffix = “tropin”
- Hypothalamo-hypophyseal portal system releasing/inhibiting hormones released by hypo

Hypothalamic Control of Posterior Pituitary

- Posterior pituitary stores:
 - oxytocin
 - ADH (vasopressin) delivered to post. pit. via hypothalamo-hypophyseal tract

Anterior Pituitary

- *Growth hormone* (GH) (somatotropin) promotes growth, protein synthesis; movement of amino acids into cells
- *Thyroid stimulating hormone* (TSH) (thyrotropin) stimulates thyroid to produce and secrete T₄ and T₃
- *Adrenocorticotropic hormone* (ACTH) (corticotropin) stimulates adrenal cortex to secrete cortisol, aldosterone
- *Gonadotropic Hormones*
 - Follicle Stimulating Hormone (FSH) Females: follicle maturation; Males: stimulates sperm production
 - Luteinizing Hormone (LH) Females: stimulates ovulation; Males: stimulates androgen secretion
 - *Prolactin* (PRL) stimulates milk production by mammary glands

Anterior Pituitary
Feedback Control of Anterior Pituitary

Adrenal Glands

- Adrenal Medulla synthesizes and secretes 80% Epinephrine and 20% Norepinephrine
 - Controlled by sympathetic division of ANS
 - Recall preganglionic neuron stimulation!

- Adrenal Cortex
 - No neural innervation!!
 - i.e., stimulated by ACTH
 - Releases Steroid hormones (corticosteroids = corticoids)

Adrenal Medulla

- Epi. & Norepi. released in ~ 4:1 ratio
- Innervated by preganglionic Sympathetic fibers
- Activated during "fight or flight" response
- Causes:
 - Increased respiratory rate
 - Increased HR and cardiac output
 - General vasoconstriction which increases venous return
 - Glycogenolysis and lipolysis

Adrenal Glands

- Adrenal Cortex is controlled by ACTH and secretes:
 - Steroid hormones (corticosteroids)
 - 3 functional groups:
 1. Mineralcorticoids (regulate Na+/K+ balance)
 - e.g. aldososterone (Na+ H2O retained/ K+ excreted) increases blood volume & pressure
 2. Glucocorticoids: carb!!!!/protein/fat metabolism
 - e.g. Cortisol (hydrocortisone):
 - stimulates gluconeogenesis (glucose from non-carbs) - inhibit glucose utilization (raises blood glucose)
 - promotes lipolysis (raises free fatty acids in blood)
 - dampen inflammation & immune response!
 - exogenous glucocorticoids (pills, shots, creams)
 3. Sex steroids (weak androgens)

Stress and the Adrenal Gland

Under stress → ACTH
 increases thus adrenal cortex secretes more glucocorticoids
- Stress induces a non-specific response called general adaptation syndrome (GAS)

3 stages in response to stress
1. Alarm reax: adrenal glands activated (epi. & cortisol)
2. Resistance: readjustment occurs (glycogen used, body uses alternative fuels (pro. & fat breakdown for gluconeogenesis but glucose uptake is inhibited - Immune response inhibited
3. Exhaustion

Stress and the Adrenal Gland

- Chronic stress can induce high levels of cortisol that cause a number of negative effects:
 - Atrophy of hippocampus (involved in memory)
 - Reduced sensitivity of tissues to insulin (insulin resistance)
 - Inhibition of vagus nerve activity
 - Suppression of growth hormone, thyroid hormone, and gonadotropins
 - Dampened immune response
Thyroid Gland

- Located just below the larynx
- Secretes:
 - T_4 (tetraiodothyronine – aka thyroxine)
 - T_3 (triiodothyronine)
- set BMR and needed for growth, development
- Calcitonin: Lowers blood Ca$^+$$^+$

Production of Thyroid Hormones

- Iodide (I^-) actively transported into colloid
- oxidized to iodine (I_2) and attached thyroglobulin
- MIT & DIT then used to make T_3 and T_4
- TSH stimulates hormones to be taken in by follicular cells and removed from thyroglobulin

Hyothyroidism:
- Inadequate T_4 and T_3 levels (hypothyroid) or TSH
- Low BMR, weight gain, lethargic, cold intolerance
- myxedema = puffy face, hands, feet
- Goiter!

Parathyroid Glands

- 4 glands: posterior lateral lobes of thyroid gland
- Secrete Parathyroid hormone (PTH)
- Raises blood Ca$^{2+}$ levels

Parathyroid Hormone

- Stimulated by decreased blood Ca$^{2+}$
- Acts on bones, kidney, and intestines
- Bones: increases osteoclast activity
- Kidney: Ca$^+$ reabsorption
- Intestines: increased Ca$^+$ absorption
- ALL increase blood Ca$^+$
Correction for Hypercalcemia

- Blood \(Ca^{2+}\) excess
- Calcitonin secretion
 - Thyroid Gland
- Reduced osteoclast activity
- Increased osteoblast activity
- Less bone resorption
- More bone deposition
- Blood \(Ca^{2+}\) returns to normal

Correction for Hypocalcemia

- Blood \(Ca^{2+}\) deficiency
- Parathyroid hormone secretion
- Reduced osteoclast activity
- More bone resorption
- Less bone deposition
- Prevention of hydroxyapatite formation
- Less urinary calcium excretion
- Conservation of calcium

Pancreas

- Islets of Langerhans
- Scattered clusters of endocrine cells in pancreas
 - *alpha* and *beta* cells
- Alpha cells secrete horomone glucagon in response to low blood glucose
 - Stimulates *glycogenolysis* and *lipolysis*
 - Increases blood glucose

Islets of Langerhans

- Beta cells secrete *insulin* in response to high blood glucose
 1. Promotes entry of glucose into cells
 2. Conversion of glucose into glycogen and fat
 3. Both decrease blood glucose

Diabetes mellitus:

- Type 1 insulin-dependent:
 - Beta cells don't secrete insulin
- Type 2 non insulin-dependent (more common):
 - Tissue loses sensitivity for insulin
 - i.e., need more for normal effect

Figure 7.18b

Pancreas

- Islets of Langerhans
- Scattered clusters of endocrine cells in pancreas
 - *alpha* and *beta* cells
- Alpha cells secrete horomone glucagon in response to low blood glucose
 - Stimulates *glycogenolysis* and *lipolysis*
 - Increases blood glucose

Islets of Langerhans

- Beta cells secrete *insulin* in response to high blood glucose
 1. Promotes entry of glucose into cells
 2. Conversion of glucose into glycogen and fat
 3. Both decrease blood glucose

Diabetes mellitus:

- Type 1 insulin-dependent:
 - Beta cells don't secrete insulin
- Type 2 non insulin-dependent (more common):
 - Tissue loses sensitivity for insulin
 - i.e., need more for normal effect
Pineal Gland

- Located epithalamus
- Secretes \textit{melatonin} in response to activity of \textit{suprachiasmatic nucleus} of hypothalamus
- Daylight inhibits SCN reducing sympathetic stimulation of Pineal gland.

GI Tract

- A number of GI organs produce hormones:
 - Stomach
 - Small intestine
 - Act on GI tract itself, gallbladder, and pancreas
 - Act in concert with ANS to coordinate regions of GI tract and pancreatic juice and bile

Sex and Reproductive Hormones

- \textit{Gonads (testes} and \textit{ovaries} \textit{secrete} sex steroid hormones:
 - Androgens (testosterone)
 - semineferous tubules = spermies
 - leydig cells = testosterone
 - Estrogens & Progesterone
 - Estrogens
 - \textit{Placenta} secretions: estrogen, progesterone, hCG, and somatomammotropin

Autocrine and Paracrine Regulation

- \textbf{Autocrine regulators}: Chemicals produced in a cell and have an effect on same cell
 - All autocrines control gene expression in target cells
- \textbf{Paracrine regulators} produced by tissue of an organ and act on different cells of the same organ

A chemical can function as both
- Autocrines and paracrines include:
 - \textit{Cytokines} \textit{(lymphokines, interleukins)}
 - stimulate (regulate), proliferation of cells of immune system
 - \textit{Growth factors} \textit{(promote growth and cell division)}
 - \textit{Neutrophins} \textit{(provides trophic support for neurons)}

Autocrine Regulators: Prostaglandins (PGs)

- Produced in almost every organ
- \textit{Belong to eicosanoid family -- all derived from arachidonic acid of plasma membrane}
 - Hormones or other agents stimulate release of arachidonic acid from membrane
 - PGs have wide variety of functions
 - Different PGs may exert antagonistic effects in tissues
 - Some promote smooth muscle contraction and some relaxation
 - Some promote clotting; some inhibit
 - Promotes \textit{inflammatory process} of immune system
 - Plays role in ovulation
 - Inhibits gastric secretion in digestive system
Autocrine Regulators: Prostaglandins (PGs)

- **Cyclooxygenase (COX)** needed for PG synthesis

Prostaglandin inhibitors: non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX; i.e., drugs inhibit inflammation!!!!!!!!!!!!!!