About this Chapter

- · Fluid and electrolyte homeostasis
- · Water balance
- · Sodium balance and ECF volume
- · Potassium balance
- Acid-base balance

right © 2009 Pearson Education, Inc

Fluid and Electrolyte Homeostasis

Why we need to worry about ionic concentrations

Na ⁺ and water	ECF volume and osmolarity
K+	Neuron and Muscle function
Ca ²⁺	Exocytosis, muscle contractions, and other functions
H ⁺ and HCO ₃ ⁻	pH balance
Body must maintain mass balance	Excretion routes: kidney and lungs

Fluid and Electrolyte Homeostasis

Copyright © 2009 Pearson Education, Inc.

Water Balance

e O 2000 Rosenne Ede

Figure 20-1a

ght © 2009 Pearson Education, Inc

The kidneys conserve volume but cannot replace lost volume

Figure 20-3

right © 2009 Pearson Education, Inc.

Water Reabsorption

· Vasopressin causes insertion of water pores into the apical membrane

Countercurrent Heat Exchanger

Copyright © 2009 Pearson Education, Inc.

2

Aldosterone Controls Sodium Balance

Na+ reobsorption and K+ secretion

Sodium Balance

Renin-angiotensin-aldosterone system

Sodium Balance

- Natriuretic peptides promote Na+ and water excretion
- · Does opposite of Aldosterone

Copyright © 2009 Pearson Education, Inc.

Potassium Balance (only 2% of K+ is in ECF)

- Most K+ is reobsorbed in proximal tubule
- K+ is secreted in the Distal tube (= dietary intake)
- Regulatory mechanisms keep plasma potassium in narrow range

Aldosterone plays a critical role

- Hypokalemia
 - Muscle weakness and failure of respiratory muscles
 and the heart
 - Stop releasing aldosterone
- Hyperkalemia
 - Can lead to cardiac arrhythmias
 - Release aldosterone
- Causes include kidney disease, diarrhea, and diuretics

Volume and Osmolarity (Dehydration)

Acid-Base Balance

- Normal pH of plasma is 7.38-7.42
- H⁺ concentration is closely regulated
 - · Changes can alter tertiary structure of proteins
- · Abnormal pH affects the nervous system
 - Acidosis: neurons become less excitable and CNS depression
 - Alkalosis: hyperexcitable
- pH disturbances
 - · Associated with K⁺ disturbances

Copyright © 2009 Pearson Education, Inc.

Acid-Base Balance

· Hydrogen ion and pH balance in the body

pH Homeostasis depends on

- Buffers
 - · Moderate changes in pH
 - · Combines with or releases H⁺
 - · Cellular proteins, phosphate ions, and hemoglobin
- · Ventilation
 - Rapid response
 - 75% of disturbances
- Renal regulation (Slowest of the three mechanisms)
 Directly by excreting or reabsorbing H⁺
 - Indirectly by change in rate at which HCO₃⁻ buffer is
 - reabsorbed or excreted

pH Disturbances

- don't forget the reflex pathway for respiratory compensation of metabolic acidosis
- But were talking kidneys today

Copyright © 2009 Pearson Education, Inc

Figure 20-19

Copyright © 2009 Pearson Education, Inc.

pH Disturbances (General)

- · What happens during acidosis (low pH)
- · H+ secreted is buffered in urine
- · Bicarbonate ions reabsorbed to buffer H+ in blood

Renal Compensation: Transporters

- Apical Na⁺-H⁺ exchanger (NHE)
- Basolateral Na+-HCO3- symport
- H⁺-ATPase
- H+-K+-ATPase
- Na⁺-NH₄⁺ antiport

Renal Compensation Proximal tubule

Intercalated Cells

• Type A intercalated cells function in acidosis

Intercalated Cells • Type B intercalated Type sp cells function in [H⁺] low alkalosis H20 + CO2 CA CI ATP

ryright © 2009 Pearson Education, Inc

(b) Type B intercalated cell function in al

Acid-Base Balance

DISTURBANCE	P _{cO2}	H+	PH	HCO3-
Acidosis				
Respiratory	î	Ť	Ļ	Ť
Metabolic	Normal* or \downarrow	Ť	Ļ	Ļ
Alkalosis				
Respiratory	Ļ	Ļ	Ť	Ļ
Metabolic	Normal* or 1	Ļ	Ť	Î

Figure 20-22b

Figure 20-20

Table 20-2

Summary

- · Fluid and electrolyte homeostasis
- Water balance
 - Vasopressin, aquaporin, osmoreceptors, countercurrent multiplier, and vasa recta
- Sodium balance
 - Aldosterone, principal cells, ANG I and II, renin, angiotensinogen, ACE, and ANP
- · Potassium balance
 - · Hyperkalemia and hypokalemia

Copyright @ 2009 Pearson Education, Inc.

Summary

- · Behavioral mechanisms
- · Integrated control of volume and osmolarity
- Acid-base balance
 - Buffers, ventilation, and kidney
 - · Acidosis and alkalosis
 - · Intercalated cells

Copyright © 2009 Pearson Education, Inc