Autonomic Nervous System and Visceral Reflexes

• Autonomic Nervous System (ANS)
 – general properties
 – anatomy
• Autonomic Effects on Target Organs
• Central Control of Autonomic Function

General Properties of ANS

• autonomic nervous system (ANS) – a motor nervous system that controls glands, cardiac muscle, and smooth muscle
• Maintains homeostasis
• Primary organs of the ANS
 – viscera of thoracic and abdominal cavities
 – some structures of the body wall
 – cutaneous blood vessels
 – sweat glands
 – piloerector muscles
• carries out actions involuntarily – no intent/awareness
• visceral effectors do not depend on the ANS to function

Divisions of ANS

sympathetic division (Fight or Flight)
 – prepares body for physical activity – exercise, trauma, arousal, competition, anger, or fear
 • increases heart rate, BP, airflow, blood glucose levels, etc.
 • reduces blood flow to the skin and digestive tract
parasympathetic division (Rest and digest)
 – calms many body functions reducing energy expenditure and assists in bodily maintenance
 • digestion and waste elimination

Divisions of ANS

• autonomic tone - balance of the two systems according to the body’s changing needs
 – parasympathetic tone
 • maintains smooth muscle tone in intestines
 • holds resting heart rate down to about 70 – 80 beats per minute
 – sympathetic tone
 • keeps most blood vessels partially constricted and maintains blood pressure

Neural Pathways

• ANS has components in both the central and peripheral nervous systems
 – nuclei in the hypothalamus and other brainstem regions
 – motor neurons in the spinal cord and peripheral ganglia
 – nerve fibers that travel through the cranial and spinal nerves

Somatic versus Autonomic Pathways

• Somatic effectors (skeletal muscles)
 – myelinated preganglionic fiber
 – unmyelinated postganglionic fiber
• Autonomic ganglion
 – visceral effectors (cardiac muscle, smooth muscle, glands)

 Premyelinated cell bodies in gray matter
Sympathetic Nervous System

- Aka thoracolumbar division (T1 – L2)
- relatively short preganglionic and long postganglionic fibers
- preganglionic cell bodies in lateral horns and nearby regions of the gray matter of spinal cord
 - lead to sympathetic chain of ganglia (paravertebral ganglia)

Sympathetic Nervous System

- each paravertebral ganglion is connected to a spinal nerve by two branches – communicating rami (rami communicant)
- preganglionic fibers are small myelinated fibers that travel form spinal nerve to the ganglion via white communicating ramus (myelinated)
- postganglionic fibers leave the ganglion by via gray communicating ramus (unmyelinated)
 - forms a bridge back to the spinal nerve
 - postganglionic fibers extend to target organ

Sympathetic Chain Ganglia

Preganglionic Pathways

3 pathways of preganglionic neurons entering sympathetic chain

Other ganglia of Sympathetic Nervous System

- collateral ganglia (prevertebral ganglia)
- Some preganglionic fibers pass thru sympathetic chain
 - form splanic nerves
 - synapse in collateral (prevertebral ganglia)

contribute to a network called the abdominal aortic plexus
- three major collateral ganglia in this plexus
 - celiac, superior mesenteric, and inferior mesenteric
 - postganglionic fibers accompany these arteries and their branches to their target organs
- solar plexus – collective name for the celiac and superior mesenteric ganglia
 - nerves radiate from ganglia like rays of the sun

Efferent Pathways of sympathetic division
Adrenal Glands

- **two glands** with different functions
 - adrenal cortex (outer layer)
 - secretes steroid hormones
 - adrenal medulla (inner core)
 - **essentially a sympathetic ganglion**
 - stimulated by preganglionic sympathetic neurons that terminate on these cells
 - secretes a mixture of hormones into bloodstream
 - catecholamines - 85% epinephrine (adrenaline) and 15% norepinephrine (noradrenaline)
 - also function as neurotransmitters
 - **sympathoadrenal system** is adrenal medulla and sympathetic nervous system

Parasympathetic Division

- **parasympathetic division** (aka craniosacral division)
 - origin of long preganglionic neurons
 - midbrain, pons, and medulla (III, VII, IX, X)
 - sacral spinal cord segments S2-S4
 - **terminal ganglia** in or near target organs
 - long preganglionic, short postganglionic fibers

Parasympathetic Cranial Nerves

- Oculomotor nerve (III)
 - narrows pupil and focuses lens
- Facial nerve (VII)
 - tear, nasal and salivary glands
- Glossopharyngeal nerve (IX)
 - parotid salivary gland
- Vagus nerve (X)
 - vescera as far as proximal half of colon
 - cardiac, pulmonary, and esophageal plexus

Efferent Pathways

- **form pelvic splanchnic nerves** that lead to the inferior hypogastric plexus
- most form pelvic nerves to their terminal ganglion on the target organs
 - distal half of colon, rectum, urinary bladder, and reproductive organs

Summary of Sympathetic Innervation

- **effectors in body wall** are innervated by sympathetic fibers in spinal nerves
- **effectors in head and thoracic cavity** are innervated by fibers in sympathetic nerves
- **effectors in abdominal cavity** are innervated by sympathetic fibers in splanchnic nerves
Enteric Nervous System

- **enteric nervous system** – nervous system of the digestive tract
 - does not arise from the brainstem or spinal cord
 - innervates smooth muscle and glands
- semiautonomous
- has its own reflex arcs
- regulates motility of esophagus, stomach, and intestines and secretion of digestive enzymes and acid
- normal digestive function also requires regulation by sympathetic and parasympathetic systems

Neurotransmitters and Receptors

- how can different autonomic neurons have different effects? constricting some vessels but dilating others
 - effects determined by types of neurotransmitters released and types of receptors found on target cells
- 2 fundamental reasons:
 - sympathetic and parasympathetic fibers secrete different neurotransmitters
 - target cells respond to the same neurotransmitter differently depending upon the type of receptor they have for it
 - all autonomic fibers secrete either acetylcholine or norepinephrine
 - there are 2 classes of receptors for each of these neurotransmitters

Acetylcholine (ACh)

- ACh is secreted by all preganglionic neurons in both divisions and the postganglionic parasympathetic neurons
 - cholinergic fibers
 - any receptor that binds it is called cholinergic receptor
- 2 types of cholinergic receptors
 - muscarinic receptors
 - all cardiac muscle, smooth muscle, and gland cells have muscarinic receptors
 - excitatory or inhibitory due to subclasses of muscarinic receptors
 - nicotinic receptors
 - on all ANS postganglionic neurons, and at neuromuscular junctions of skeletal muscle
 - excitatory when ACh binding occurs

Norepinephrine (NE)

- NE is secreted by nearly all sympathetic postganglionic neurons
 - called adrenergic fibers
 - receptors for it called adrenergic receptors
 - alpha-adrenergic receptors
 - usually excitatory
 - 2 subclasses use different second messengers (α_1 & α_2)
 - beta-adrenergic receptors
 - usually inhibitory
 - 2 subclasses with different effects, but both act through cAMP as a second messenger (β_1 & β_2)

Overview

- **autonomic effects on glandular secretion** are often an indirect result of their effect on blood vessels
 - vasodilation – increased blood flow – increased secretion
 - vasoconstriction – decreased blood flow – decreased secretion
- **sympathetic effects tend to last longer** than parasympathetic effects
 - ACh released by parasympathetics is broken down quickly at synapse
 - NE by sympathetic is reabsorbed by nerve, diffuses to adjacent tissues, and much passes into bloodstream
- many substances released as neurotransmitters that modulate ACh and NE function
 - sympathetic fibers also secrete enkephalin, substance P, neuropeptide Y, somatostatin, neurotensin, or gonadotropin-releasing hormone
 - parasympathetic fibers stimulate endothelial cells to release the gas, nitric oxide – causes vasodilation by inhibiting smooth muscle tone
 - function is crucial to penile erection - means of action of Viagra

Figure 15.8
Dual Innervation

- dual innervation - most viscera receive nerve fibers from both parasympathetic and sympathetic divisions
 - antagonistic effect – oppose each other
 - cooperative effects – two divisions act on different effectors to produce a unified overall effect
- both divisions do not normally innervate an organ equally
 - digestion, heart rate

Dual Innervation of the Iris

![Image of the iris with dual innervation labels]

Figure 15.9

Without Dual Innervation

- some effectors receive only sympathetic fibers
 - adrenal medulla, arrector pili muscles, sweat glands and many blood vessels
- control of blood pressure and routes of blood flow
- sympathetic vasomotor tone - a baseline firing frequency of sympathetics
 - keeps vessels in state of partial constriction
 - increase in firing frequency - vasoconstriction
 - decrease in firing frequency - vasodilation
 - can shift blood flow from one organ to another as needed
- sympathetic division acting alone can exert opposite effects on the target organ through control of blood vessels
 - during stress
 - blood vessels to muscles and heart dilate
 - blood vessels to skin constrict

Sympathetic and Vasomotor Tone

- sympathetic division prioritizes blood vessels to skeletal muscles and heart in times of emergency
- sympathetic vasoconstrict to minimize bleeding if injury occurs during stress or exercise
Control of Autonomic Function

- **ANS** regulated by several levels of CNS
 - **cerebral cortex** has an influence — anger, fear, anxiety
 - powerful emotions influence the ANS because of the connections between our limbic system and the hypothalamus
 - **hypothalamus** - major visceral motor control center
 - nuclei for primitive functions — hunger, thirst, sex
 - **midbrain, pons, and medulla oblongata** contain:
 - nuclei for cardiac and vasomotor control, salivation, swallowing, sweating, bladder control, and pupillary changes
 - **spinal cord reflexes**
 - defecation and micturition reflexes are integrated in spinal cord
 - we control these functions because of our control over skeletal muscle sphincters...

Visceral Reflexes

- **visceral reflexes** - unconscious, automatic, stereotyped responses to stimulation involving visceral receptors and effectors and somewhat slower responses
- **visceral reflex arc**
 - **receptors** — nerve endings that detect stretch, tissue damage, blood chemicals, body temperature, and other internal stimuli
 - **afferent neurons** — leading to the CNS
 - **interneurons** — in the CNS
 - **efferent neurons** — carry motor signals away from the CNS
 - **effectors** — that make adjustments
- **ANS modifies effector activity**

Visceral Reflex to High BP