Nervous Tissue

- overview of the nervous system
- properties of neurons
- supportive cells (neuroglia)
- electrophysiology of neurons
- synapses
- neural integration

Overview of Nervous System

- endocrine and nervous system work together to maintain homeostasis
 - endocrine system - communicates by chemical messengers (hormones) secreted into blood
 - nervous system - employs electrical and chemical means to send messages from cell to cell
- nervous system carries out its task in three basic steps:
 - Sensory receptors detect external/internal stimuli and transmit messages to spinal cord and brain
 - brain and spinal cord processes this information
 - Brain and spinal cord send commands (or not) to carry out a response

2 Major Subdivisions of Nervous System

- Central nervous system
 - Brain
 - Spinal cord
- Peripheral nervous system
 - Nerves
 - Ganglia

Subdivisions of Nervous System

- Central nervous system
- Peripheral nervous system
- Sensory division
- Motor division
- Visceral sensory division
- Somatic sensory division
- Visceral motor division
- Somatic motor division
- Autonomic Nervous System
- Sympathetic division
- Parasympathetic division

Universal Properties of Neurons

- excitability (irritability)
 - respond to stimuli
- conductivity
 - Cells produce electrical signals that are conducted to other cells
- secretion
 - when electrical signal reaches end of nerve fiber, a chemical neurotransmitter that can stimulate next cell

Structure of a Neuron

- soma — Cell body, neurosoma, cell body, or perikaryon
 - nucleus
 - cytoplasm contains organelles
 - Nissl bodies
 - Cytoskeleton: microtubules & neurofibrils (bundles of actin filaments)
 - no centrioles — no further cell division
- Dendrites

2 types of cells make up nervous tissue:
1. Neurons
2. Neuroglial cells (aka Glial cells)
Structure of a Neuron

- **axon (nerve fiber)** –
 - cylindrical, relatively unbranched for most of its length
 - specialized for conduction of nerve signals
- **axoplasm** – cytoplasm of axon
- **axolemma** – plasma membrane of axon
- one axon per neuron
- Schwann cells and myelin sheath enclose axon
- terminal ends
- synaptic knob

Classification according to Structure

- **multipolar neuron** – one axon and multiple dendrites
- **bipolar neuron** – one axon and one dendrite
- **unipolar neuron** – single process leading away from the soma
- **axonic neuron** – many dendrites but no axon

Neuroglial Cells

- about a trillion (10¹²) neurons in nervous system
- neuroglia outnumber neurons by as much as 50 to 1!!!!!!!!!!!!!

Neuroglia or glial cells:

- 6 types (4 types occur in CNS & 2 types occur in PNS)
- support and protect neurons
- bind neurons together and form framework for nervous tissue

Functional Classes of Neurons

- **Peripheral nervous system**
 - **Sensory (afferent) neurons.**
 - **Motor (efferent) neurons.**
- **Central nervous system**
 - **Interneurons (association neurons)**

Axonal Transport

- **axonal transport** – two-way passage of proteins, organelles, and other material along an axon
 - **anterograde transport** – movement down the axon away from soma
 - **retrograde transport** – movement up the axon toward soma
- **microtubules** guide materials along axon
 - motor proteins (kinesin and dynein) carry materials “on their backs” while they “crawl” along microtubules

Six Types of Neuroglial Cells

- 4 types occur only in CNS
 - **oligodendrocytes**
 - form myelin sheaths in CNS
 - **ependymal cells**
 - line cavities of the brain
 - secrete cerebrospinal fluid (CSF)
 - **microglia**
 - small, wandering macrophages (derived from WBCs)
 - search for cellular debris to phagocytize
 - **Astrocytes** (most abundant glial cell in CNS)
 - BBB
 - Nerve growth factor
 - For scar tissue
Neuroglial Cells of CNS

Figure 12.6

Neuroglial Cells

- 2 types occur only in PNS
 - Schwann cells
 - produce a myelin sheaths
 - assist in regeneration of damaged fibers
 - satellite cells
 - surround cell bodies in ganglia of PNS

Myelin Sheath in PNS

Myelination in PNS

Myelination in CNS

Speed of nerve signal along a nerve fiber depends on two factors:
1. diameter of fiber
2. presence or absence of myelin sheath

Signal conduction occurs along the surface of a fiber
- larger fibers have more surface area and conduct signals more rapidly
- myelin acts as a conductor
Regeneration of Nerve Fiber

- **soma is intact & some neurilemma remains**
- **fiber distal to injury degenerates**
 - macrophages clean up tissue debris at the point of injury and beyond
- **soma swells, ER breaks up, and nucleus moves off center**
 - due to loss of nerve growth factor from neuron’s target cell
- **axon stump sprouts growth processes**
- **regeneration tube** – formed by Schwann cells, basal lamina, and the neurilemma near injury
 - tube guides the growing sprout back to original target cells and reestablishes synaptic contact
- **NOT POSSIBLE IN CNS**

Resting Membrane Potential

- **RMP exists because of unequal electrolyte (ions) distribution between extracellular fluid (ECF) and intracellular fluid (ICF)**
- **Three factors about a resting neuron**
 - ions diffuse down their concentration gradient through the membrane
 - plasma membrane is selectively permeable and allows some ions to pass easier than others
 - electrical attraction of cations and anions to each other

Creating the Resting Membrane Potential (RMP)

- At rest, all cells have a negative internal charge and unequal distribution of ions:
 - **Results from:**
 - Large anions are trapped inside cell
 - Na+/K+ pump and limited permeability keep Na+ high outside cell
 - K+ is very permeable and is highly concentrated inside cell (i.e., moves down gradient to outside of cell)

Resting Membrane Potential Diagram:

- **Plasma membrane has ion channels**
 - Voltage-activated
 - Chemically activated
 - Passive

Depolarization occurs when MP becomes more positive
Hyperpolarization: MP becomes more negative than RMP
Repolarization: MP returns to RMP

Creating the Resting Membrane Potential Diagram:

1. Proteins
2. Sodium-potassium pump
3. K+ can leak out (diffusion)
- Na^+ concentrated outside of cell (ECF)
- K^+ concentrated inside cell (ICF)

Resting Membrane Potential

- Na^+ 145 mEq/L
- K^+ 4 mEq/L
- Na^+ 12 mEq/L
- K^+ 150 mEq/L

Large anions that cannot escape cell

Resting potential

- Polarized

Nerve impulse or Action potential

Stimulus

- Depolarized

Action potential

- Repolarization

Action potential

- Polarized
Action Potentials

- only a thin layer of the cytoplasm next to the cell membrane is affected
- action potential is often called a spike
- Characteristics of action potential
 - follows an all-or-none law!
 - nondecremental - do not get weaker with distance
 - irreversible - once started goes to completion and can not be stopped

Sodium and Potassium Gates

Figure 12.14
Refractory Period

- Refractory period - period of resistance to stimulation
- Two phases of the refractory period
 - Absolute refractory period
 - No stimulus of any strength will trigger AP
 - As long as Na⁺ gates are open
 - Relative refractory period
 - Only especially strong stimulus will trigger new AP

Saltatory Conduction

- Saltatory conduction - the nerve signal seems to jump from node to node

Nerve Signal Conduction Unmyelinated Fibers

- Voltage-gated channels needed for APs
 - Fewer than 25 per μm² in myelin-covered regions (internodes)
 - Up to 12,000 per μm² in nodes of Ranvier
- Fast Na⁺ diffusion occurs between nodes
 - Signal weakens under myelin sheath, but still strong enough to stimulate an action potential at next node
- Saltatory conduction - the nerve signal seems to jump from node to node

Local Potentials

- Neuron response begins at the dendrite
 - When neuron is stimulated at dendrite (or soma)
 - Opens Na⁺ gates and allows Na⁺ to rush in to the cell
 - Na⁺ inflow neutralizes some of the internal negative charge
 - Depolarization
 - For short distance on the inside of the plasma membrane
 - Producing a current that travels towards the cell's trigger zone - this short-range change in voltage is called a local potential
Characteristic of Local Potentials

- They are different than APs:
 - **graded** - vary in magnitude with stimulus strength
 - stronger stimuli open more Na⁺ gates!
 - **decremental** - get weaker the farther they travel from the point of stimulation
 - **reversible** - when stimulation ceases, K⁺ diffusion out of cell returns cell to normal resting potential
 - can be either excitatory (EPSP) or inhibitory (IPSP)

- Stimuli (neurotransmitters) make the membrane potential more negative – hyperpolarize it – becomes less sensitive and less likely to produce an action potential

EPSPs

- **Graded in magnitude**
- **Have no threshold**
- **Cause depolarization**
- **Have no refractory period**
- **Summate**

- http://www.sinauer.com/neuroscience4e/animations5.2.html