
6 System Architecture

In the following sections we discuss the main components of the Oracle DBMS (Version 7.X)
architecture (Section 6.1) and the logical and physical database structures (Sections 6.2 and
6.3). We furthermore sketch how SQL statements are processed (Section 6.4) and how database
objects are created (Section 6.5).

6.1 Storage Management and Processes

The Oracle DBMS server is based on a so-called Multi-Server Architecture. The server is
responsible for processing all database activities such as the execution of SQL statements, user
and resource management, and storage management. Although there is only one copy of the
program code for the DBMS server, to each user connected to the server logically a separate
server is assigned. The following figure illustrates the architecture of the Oracle DBMS
consisting of storage structures, processes, and files.

Server−
Process

Server−
Process

Server−
Process

PGA PGA PGA

Shared Pool

Dictionary Cache

Library Cache

System Global Area (SGA)

Server−

Buffer
Archive

Log

Buffer

LGWR PMON SMONARCH

Background Processes

DBWR

PGA

User 1 User 3 User nUser 2

Process

Database

Datafiles Redo−Log Files Control Files Archive− and Backup Files

Redo−Log−

Buffer

Figure 4: Oracle System Architecture

58

Each time a database is started on the server (instance startup), a portion of the computer’s
main memory is allocated, the so-called System Global Area (SGA). The SGA consists of the
shared pool, the database buffer, and the redo-log buffer. Furthermore, several background
processes are started. The combination of SGA and processes is called database instance. The
memory and processes associated with an instance are responsible for efficiently managing the
data stored in the database, and to allow users accessing the database concurrently. The
Oracle server can manage multiple instances, typically each instance is associated with a
particular application domain.

The SGA serves as that part of the memory where all database operations occur. If several
users connect to an instance at the same time, they all share the SGA. The information stored
in the SGA can be subdivided into the following three caches.

Database Buffer The database buffer is a cache in the SGA used to hold the data blocks that
are read from data files. Blocks can contain table data, index data etc. Data blocks are
modified in the database buffer. Oracle manages the space available in the database
buffer by using a least recently used (LRU) algorithm. When free space is needed in the
buffer, the least recently used blocks will be written out to the data files. The size of the
database buffer has a major impact on the overall performance of a database.

Redo-Log-Buffer This buffer contains information about changes of data blocks in the database
buffer. While the redo-log-buffer is filled during data modifications, the log writer process
writes information about the modifications to the redo-log files. These files are used after,
e.g., a system crash, in order to restore the database (database recovery).

Shared Pool The shared pool is the part of the SGA that is used by all users. The main
components of this pool are the dictionary cache and the library cache. Information about
database objects is stored in the data dictionary tables. When information is needed by
the database, for example, to check whether a table column specified in a query exists,
the dictionary tables are read and the data returned is stored in the dictionary cache.
Note that all SQL statements require accessing the data dictionary. Thus keeping relevant
portions of the dictionary in the cache may increase the performance. The library cache
contains information about the most recently issued SQL commands such as the parse
tree and query execution plan. If the same SQL statement is issued several times, it need
not be parsed again and all information about executing the statement can be retrieved
from the library cache.

Further storage structures in the computer’s main memory are the log-archive buffer (optional)
and the Program Global Area (PGA). The log-archive buffer is used to temporarily cache redo-
log entries that are to be archived in special files. The PGA is the area in the memory that is
used by a single Oracle user process. It contains the user’s context area (cursors, variables
etc.), as well as process information. The memory in the PGA is not sharable.

For each database instance, there is a set of processes. These processes maintain and enforce the
relationships between the database’s physical structures and memory structures. The number

59

of processes varies depending on the instance configuration. One can distinguish between user
processes and Oracle processes. Oracle processes are typically background processes that
perform I/O operations at database run-time.

DBWR This process is responsible for managing the contents of the database buffer and the
dictionary cache. For this, DBWR writes modified data blocks to the data files. The
process only writes blocks to the files if more blocks are going to be read into the buffer
than free blocks exist.

LGWR This process manages writing the contents of the redo-log-buffer to the redo-log files.

SMON When a database instance is started, the system monitor process performs instance
recovery as needed (e.g., after a system crash). It cleans up the database from aborted
transactions and objects involved. In particular, this process is responsible for coalescing
contiguous free extents to larger extents (space defragmentation, see Section 6.2).

PMON The process monitor process cleans up behind failed user processes and it also cleans
up the resources used by these processes. Like SMON, PMON wakes up periodically to
check whether it is needed.

ARCH (optional) The LGWR background process writes to the redo-log files in a cyclic
fashion. Once the last redo-log file is filled, LGWR overwrites the contents of the first
redo-log file. It is possible to run a database instance in the archive-log mode. In this case
the ARCH process copies redo-log entries to archive files before the entries are overwritten
by LGWR. Thus it is possible to restore the contents of the database to any time after
the archive-log mode was started.

USER The task of this process is to communicate with other processes started by application
programs such as SQL*Plus. The USER process then is responsible for sending respective
operations and requests to the SGA or PGA. This includes, for example, reading data
blocks.

6.2 Logical Database Structures

For the architecture of an Oracle database we distinguish between logical and physical
database structures that make up a database. Logical structures describe logical areas of stor-
age (name spaces) where objects such as tables can be stored. Physical structures, in contrast,
are determined by the operating system files that constitute the database.

The logical database structures include:

Database A database consists of one or more storage divisions, so-called tablespaces.

Tablespaces A tablespace is a logical division of a database. All database objects are logically
stored in tablespaces. Each database has at least one tablespace, the SYSTEM tablespace,
that contains the data dictionary. Other tablespaces can be created and used for different
applications or tasks.

60

Segments If a database object (e.g., a table or a cluster) is created, automatically a portion
of the tablespace is allocated. This portion is called a segment. For each table there
is a table segment. For indexes so-called index segments are allocated. The segment
associated with a database object belongs to exactly one tablespace.

Extent An extent is the smallest logical storage unit that can be allocated for a database
object, and it consists a contiguous sequence of data blocks! If the size of a database
object increases (e.g., due to insertions of tuples into a table), an additional extent is
allocated for the object. Information about the extents allocated for database objects
can be found in the data dictionary view USER EXTENTS.

A special type of segments are rollback segments. They don’t contain a database object, but
contain a “before image” of modified data for which the modifying transaction has not yet
been committed. Modifications are undone using rollback segments. Oracle uses rollback
segments in order to maintain read consistency among multiple users. Furthermore, rollback
segments are used to restore the “before image” of modified tuples in the event of a rollback of
the modifying transaction.

Typically, an extra tablespace (RBS) is used to store rollback segments. This tablespace can be
defined during the creation of a database. The size of this tablespace and its segments depends
on the type and size of transactions that are typically performed by application programs.

A database typically consists of a SYSTEM tablespace containing the data dictionary and
further internal tables, procedures etc., and a tablespace for rollback segments. Additional ta-
blespaces include a tablespace for user data (USERS), a tablespace for temporary query results
and tables (TEMP), and a tablespace used by applications such as SQL*Forms (TOOLS).

6.3 Physical Database Structure

The physical database structure of an Oracle database is determined by files and data blocks:

Data Files A tablespace consists of one or more operating system files that are stored on disk.
Thus a database essentially is a collection of data files that can be stored on different
storage devices (magnetic tape, optical disks etc.). Typically, only magnetic disks are
used. Multiple data files for a tablespace allows the server to distribute a database object
over multiple disks (depending on the size of the object).

Blocks An extent consists of one or more contiguous Oracle data blocks. A block determines
the finest level of granularity of where data can be stored. One data block corresponds
to a specific number of bytes of physical database space on disk. A data block size is
specified for each Oracle database when the database is created. A database uses and
allocates free database space in Oracle data blocks. Information about data blocks can
be retrieved from the data dictionary views USER SEGMENTS and USER EXTENTS. These
views show how many blocks are allocated for a database object and how many blocks
are available (free) in a segment/extent.

61

As mentioned in Section 6.1, aside from datafiles three further types of files are associated with
a database instance:

Redo-Log Files Each database instance maintains a set of redo-log files. These files are used
to record logs of all transactions. The logs are used to recover the database’s transactions
in their proper order in the event of a database crash (the recovering operations are called
roll forward). When a transaction is executed, modifications are entered in the redo-log
buffer, while the blocks affected by the transactions are not immediately written back to
disk, thus allowing optimizing the performance through batch writes.

Control Files Each database instance has at least one control file. In this file the name of
the database instance and the locations (disks) of the data files and redo-log files are
recorded. Each time an instance is started, the data and redo-log files are determined by
using the control file(s).

Archive/Backup Files If an instance is running in the archive-log mode, the ARCH process
archives the modifications of the redo-log files in extra archive or backup files. In contrast
to redo-log files, these files are typically not overwritten.

The following ER schema illustrates the architecture of an Oracle database instance and the
relationships between physical and logical database structures (relationships can be read as
“consists of”).

block

tablespace

extent

segment

redo−log file

datafile

database control file

table

index

cluster

rollback seg.

Figure 5: Relationships between logical and physical database structures

62

6.4 Steps in Processing an SQL Statement

In the following we sketch how an SQL statement is processed by the Oracle server and which
processes and buffers involved.

1. Assume a user (working with SQL*Plus) issues an update statement on the table TAB such
that more than one tuple is affected by the update. The statement is passed to the server
by the USER process. Then the server (or rather the query processor) checks whether
this statement is already contained in the library cache such that the corresponding
information (parse tree, execution plan) can be used. If the statement can not be found,
it is parsed and after verifying the statement (user privileges, affected tables and columns)
using data from the dictionary cache, a query execution plan is generated by the query
optimizer. Together with the parse tree, this plan is stored in the library cache.

2. For the objects affected by the statement (here the table TAB) it is checked, whether the
corresponding data blocks already exist in the database buffer. If not, the USER process
reads the data blocks into the database buffer. If there is not enough space in the buffer,
the least recently used blocks of other objects are written back to the disk by the DBWR
process.

3. The modifications of the tuples affected by the update occurs in the database buffer.
Before the data blocks are modified, the “before image” of the tuples is written to the
rollback segments by the DBWR process.

4. While the redo-log buffer is filled during the data block modifications, the LGWR process
writes entries from the redo-log buffer to the redo-log files.

5. After all tuples (or rather the corresponding data blocks) have been modified in the
database buffer, the modifications can be committed by the user using the commit
command.

6. As long as no commit has been issued by the user, modifications can be undone using
the rollback statement. In this case, the modified data blocks in the database buffer are
overwritten by the original blocks stored in the rollback segments.

7. If the user issues a commit, the space allocated for the blocks in the rollback segments is
deallocated and can be used by other transactions. Furthermore, the modified blocks in
the database buffer are unlocked such that other users now can read the modified blocks.
The end of the transaction (more precisely the commit) is recorded in the redo-log files.
The modified blocks are only written to the disk by the DBWR process if the space
allocated for the blocks is needed for other blocks.

6.5 Creating Database Objects

For database objects (tables, indexes, clusters) that require their own storage area, a segment
in a tablespace is allocated. Since the system typically does not know what the size of the

63

database object will be, some default storage parameters are used. The user, however, has
the possibility to explicitly specify the storage parameters using a storage clause in, e.g., the
create table statement. This specification then overwrites the system parameters and allows
the user to specify the (expected) storage size of the object in terms of extents.

Suppose the following table definition that includes a storage clause:

create table STOCKS

(ITEM varchar2(30),
QUANTITY number(4))

storage (initial 1M next 400k
minextents 1 maxextents 20 pctincrease 50);

initial and next specify the size of the first and next extents, respectively. In the definition
above, the initial extent has a size of 1MB, and the next extent has a size of 400KB. The
parameter minextents specifies the total number of extents allocated when the segment is
created. This parameter allows the user to allocate a large amount of space when an object
is created, even if the space available is not contiguous. The default and minimum value
is 1. The parameter maxextents specifies the admissible number of extents. The parameter
pctincrease specifies the percent by which each extent after the second grows over the previous
extent. The default value is 50, meaning that each subsequent extent is 50% larger than
the preceding extent. Based on the above table definition, we thus would get the following
logical database structure for the table STOCKS (assuming that four extents have already been
allocated):

400k 600k 900kinitial 1M

1. Extent 2. Extent 3. Extent 4. Extent

Figure 6: Logical Storage Structure of the Table STOCKS

If the space required for a database object is known before creation, already the initial extent
should be big enough to hold the database object. In this case, the Oracle server (more
precisely the resource manager) tries to allocate contiguous data blocks on disks for this object,
thus the defragmentation of data blocks associated with a database object can be prevented.

For indexes a storage clause can be specified as well

create index STOCK IDX on STOCKS(ITEM)

storage (initial 200k next 100k
minextents 1 maxextents 5);

64

